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Reading:
105 Notes 14.1-14.5
Hand & Finch 2.9, 9.7

1.
Discuss the motion of a continuous string (ten-
sion τ , mass per unit length µ) with fixed end-
points y = 0 at x = 0 and x = L, when the
initial conditions are

y(x, 0) = A sin
3πx
L

ẏ(x, 0) = 0 .

Resolve the solution into normal modes.

2.
Discuss the motion of a continuous string (ten-
sion τ , mass per unit length µ) with fixed end-
points y = 0 at x = 0 and x = L, when (in a
certain set of units) the initial conditions are

y(x, 0) = 4
x(L− x)

L2

ẏ(x, 0) = 0 .

Find the characteristic frequencies and calculate
the amplitude of the nth mode.

3.
Solve for the motion y(x, t) of a continuous string
(tension τ , mass per unit length µ) with fixed
endpoints y = 0 at x = 0 and x = L, when the
initial conditions are

y(x, 0) = A sin
πx

L

ẏ(x, 0) = V sin
5πx
L

,

where A and V are constants.

4.
A continuous string (tension τ , mass per unit
length µ) is attached to fixed supports infinitely

far away. At t = 0 the string satisfies initial
conditions

y(x, 0) = 0
∂y

∂t
(x, 0) = α δ(x) ,

where δ(x) is a Dirac delta function and α is a
constant that can be made arbitrarily infinites-
imal, so that the string’s slope remains small
enough for the usual wave equation to apply.
This initial condition is appropriate to the string
having been struck at (x = 0, t = 0) with a sharp
object.

Compute y(x, t) for t > 0.

5.
Show that if ψ and ψ∗ are taken as two indepen-
dent field variables, the Lagrangian density

L′ =
h̄2

2m
∇ψ∗ · ∇ψ + V ψ∗ψ +

h̄

2i
(ψ∗ψ̇ − ψψ̇∗)

(where ˙ means ∂/∂t in this context) leads to the
Schrödinger equation

− h̄2

2m
∇2ψ + V ψ = ih̄

∂ψ

∂t

and its complex conjugate.

6.
Consider a membrane stretched between fixed
supports at x = 0, x = L, y = 0, and y = L. Per
unit area, its kinetic and potential energies are

T ′ = 1
2σ

(∂z
∂t

)2

U ′ = 1
2β

((∂z
∂x

)2 +
(∂z
∂y

)2
)
,



where σ is the membrane’s mass per unit area,
β is a constant that is inversely proportional to
its elasticity, and z is its (normal) displacement.

Apply the Euler-Lagrange equations to obtain a
partial differential equation for z(x, y, t). Using
a trial solution

z(x, y, t) = X(x)Y (y)T (t) ,

find the angular frequencies of vibration for the
five lowest-frequency normal modes of oscilla-
tion.

7. and 8. (double problem)
The Lagrangian density (per unit volume) for
a charge density ρ(r, t) and current density
j(r, t) in the presence of an electromagnetic field
E(r, t), B(r, t) is

L′ =
E2 −B2

8π
− ρφ+

1
c
j · A .

The first term is the Lagrangian density corre-
sponding to the self-energy of the free field, and
the latter terms represent the interaction be-
tween fields and charges. The self-energy of the
individual (point) charges is infinity in classical
theory and is omitted. In the above, A is the
vector potential defined by

B = ∇× A

E = −∇φ− 1
c

∂A
∂t

(Gaussian units are used throughout this prob-
lem). If you are familiar with relativistic trans-
formations of electromagnetic fields, you may no-
tice that the above Lagrangian density is Lorentz
invariant, although not manifestly so.

The homogeneous (charge and current indepen-
dent) Maxwell equations follow directly from the
equations relating E and B to the potentials.
To complete the picture, using φ and the three
components of A as four generalized (field) co-
ordinates, apply the Euler-Lagrange equations
to L′ to obtain the two inhomogeneous Maxwell
equations

∇ · E = 4πρ

∇× B − 1
c

∂E
∂t

=
4π
c

j .


